N89;15580

A HARDWARE IMPLEMENTATION OF A RELAXATION
ALGORITHM TO SEGMENT IMAGES’

by
ANTONIO G. LODA’ , HEGGERE S. RANGANATH

2003 Fulton Dr., Huntsville , Computer Science Department
University of Alabama in

Huntsville
ABSTRACT
Relaxation labelling is a mathematical technique frequently
applied in 1image processing algorithms. In particular, it is

extensively used for the purpose of segmenting images. The paper
presents a hardware implementation of a segmentation algorithm, for
images that consist of two regions, based on relaxation labelling.
The algorithm determines, for each pixel, the probability that it
should be labelled as belonging to a particular region, for all regions -
in the image. The label probabilities (’labellings’) of every pixel are
iteratively updated, based on those of the pixel’s neighbors, until
they converge. The pixel is then assigned to the region
correspondent to the maximum label probability. The system
consists of a control unit and of a pipeline of segmentation stages.
Each segmentation stage emulates in the hardware an iteration of the
relaxation algorithm. The design of the segmentation stage is based
on commercially available digital signal processing integrated
circuits. Multiple iterations are accomplished by stringing stages
together or by looping the output of a stage, or string of stages, to its
input. The system interfaces with a generic host computer. Given
the modularity of the architecture, performance can be enhanced by
merely adding segmentation stages. The processing speed is near real
time.

I. Introduction.

Image analysis is concerned with the description of images and
the recognition of objects. Traditionally, image analysis has been
applied extensively in the space exploration field, for example in

221

the analysis of pictures taken from spacecrafts or satellites. The first
and foremost step in an image analysis algorith is segmentation.
Segmentation consists of processing an image into meaningful
regions. Therefore the success of image analysis depends largely on
the accuracy of the segmentation algorithm. A widely accepted
segmentation technique is called ’relaxation labelling’. A full
description of this algorithm is deferred to section II. Among its
virtues, relaxation lends itself very well to hardware implementation,.

This paper describes the architecture of a blob detector, a
system that segments images characterized by two regions. The
system is a hardware implementation of the relaxation labelling
algorithm , in its classical probabilistic form. In section II, the
relaxation algorithm is described in detail. In section III, the
architecture of the system is defined. The conclusions are drawn in
section IV.

Il . Classical probabilistic relaxation labelling.

The following discussion is to familiarize the reader with a
segmentation algorithm called ’classic probabilistic relaxation
labelling’ [1]. This segmentation technique is here described in a
step by step fashion. The discussion sets the background for the
definition of the hardware implementation of the algorithm, in
section III.

I1.1. The algorithm. :

Let D={px(i,j),i=1,..,nl1,j=1,..,n2} be a digital image consisting
of m regions ¢1,...cm. Let gk be the average gray level for region k.
What follows is a step by step procedure to segment the image:

STEP 1: For every pixel px(i,j) a set of probabilities
P(0)(i,j,1),..,P(0)(i,j,m), or ’probability function’ P(0), is computed
as follows:

m

P(0)(i,j,k)=(1/abs(px(i,j)-gx)+€)/ T (1/abs(px(i,j)-gk)+€)

k=1
k=1,.m {2.1.1)})

where P(O)(i,j,k) represents the probability that pixel px(i,j) belongs
to region ck, € is non zero constant and

222

m
r P(0)(i,j,k)=1 (2.1.2}
k=1

The following steps are iterated. The formulas are generalized
for iteration r.

STEP 2 : For every pixel px(i,j), a set of ’compatibility
coefficients’ c(T)(i,j,k,il,j1,k1), or ’compatibility function’ c(T), is
defined, where il=1,..,n1, jl=1,..,n2, k,kl1=1,..,m, and (il,jl)=(i,j).
c(r)(,j,k,il,j1,k1) represents the compatibility between the
assignment of px(i,j) to region ck and that of p(il,jl) to ck1. The
compatibility function is basically a heuristic evaluation of the
validity of a pixel’s region assignment (labelling), on the basis of the
labellings of the rest of the image pixels.

Two commonly used assumptions in the formulation of the
compatibility function are as follows:

1. Only the neighborhood pixels are relevant to the
classification of the pixel under scrutiny. Therefore

= 0 if i-1 < i1 < i+l
and j-1 < jl < j+1

c(r)(i,j,1,i1,j1,k1)
=0 otherwise {2.1.3}

2. The compatibility function is ’space invariant’ that is, for
every integer ii, jj such that px(i+ii,j+jj) and px(il+ii,jl1+jj) belong
to D,

c(r)(i,j,k,il,j1,k1) = c(T)(i+ii,j+jj.k,il+ii,jl1+jj.k1)
i=1,..,n1; j=1,..,n2;

i-1 < il <i+l1, and j-1 < jl < j+1 {2.1.4})

Several definitions have been introduced for the compatibility
function, one is given below. Let

223

c(r)(k,ii,jj. k1) = c(T)(,j,k,i+ii,j+jj, k1)
i=1,..,n1, j=1,..,n2, -1 <ii <1, -1 < jj <1 (2.1.5)

Let pl(r)(k) represents the a priori probability of an image pixel
belonging to region ck. Let, also, jp(r)(k,ii,jj,kl) be the joint
probability that an image pixel belongs to region ck and its neighbor,
at the orientation specified by (ii,jj), belongs to region ck1.

We define
c(r)(k,ii,jj,k1)=[logR(M)(k,ii,jj,k1)], (2.1.6)

where

R(T)(k,ii,jj,k1)=
ip (T (k,ii,jij,k1)/(p1 (D (k)*p1(T)(k1))] (2.1.7)

For practical purposes, the values of the compatibility function
are truncated to the interval [-1,1].

STEP 3: A set of supporting coefficients
Q(r)(i,j,1),..,Q(r)(i,j,m), or ’support function’ Q(r), is computed as
follows:

Q(r)(,j.k)=

i+1 j+1 m

(1/8) £ £ T Cc(r)(k,il-i,j1-j,k1)P(r)(il,j1,k1) {2.1.8)
il= jl=kl= ’
i-1 j-1 1

Q(r) represents the contribution of the total relevant
environment of pixel px(i,j) to P(T)(i,j,k).

STEP 4: P(r)(i,j,k) is updated as follows:

224

Pr+1)(i,j,k) = [P(D)(i,j,k)[1+Q(D)(i,j,k)+e]1/

m
2 PG, K [1+QN(,j,k) +¢e] {2.1.9)
k=1
Each pixel px(i,j) is then assigned to the region cg(r), where
K(r) is such that the probability P(T)(i,j,k) is maximum for k = K(T),

The iteration is repeated wuntil the labellings converge.
Alternatively, one can stop the algorithm after a fixed number of
iterations has been executed, or according to some other termination
scheme.

III. The blob detector.

The algorithm presented in the previous section is the
centerpiece in the design of the blob detector. The system is
intended for scientific and industrial applications. The speed
required in these applications cannot be normally accomplished by
general purpose computers. Computers based on special purpose
architectures, such as array processors or systolic arrays, are better
suited but also result in costs often not justifiable in the context of
simple applications.

The system defined in this paper derives its speed from its
dedicated architecture. By optimizing the design for a specific
algorithm the system complexity is reduced as well. Also, the
architecture is pipelined, since the promptness of the result is not as
important as the system’s throughput. Finally, the design achieves
expandability through modularity and is intended as a peripheral to a
commercial general purpose personal computer, to facilitate its use.

As a result of these design choices the blob detector is a high
speed, low-cost, low-complexity system, configured as a peripheral to
a personal computer.

II1I.1. General system architecture

The system consists of a microcontroller (MC) and of the
relaxation engine (RE) (Figure 1). The microcontroller controls the
synchronization of all system operations, through the system control
(SCB) and i/o (SIOB) buses. It communicates with the host computer

225

through the host interface(HI).

The latter allows the host to I
upload the image data, request
the execution of the RE

segmentation procedure and
download the processed image.

The segmentation engine is SIOB r

responsible for the execution =% 7

of the segmentation algorithm.) J
HI MC

The input and the segmented
images are received and
transmitted over the system i/o S —
b e SCB

us . HB

The function of the
microcontroller is to
coordinate the overall system
operation and the communication with the host computer.
Furthermore, it is designed to have enough processing power to
perform some post-segmentation simple image processing tasks,
should this be required.

Figure 1. The system architecture.

The architecture of the microcontroller is based on a commercial
32-bit microprocessor (MP), coupled with a math coprocessor (MCP)
(Figure 2). A memory

PAB management unit (MMU)
T l oversees the

PDB - : microcontroller’s accesses

3 MMU 101 4 to the memory system
(MS). The memory system

MCP MP l_ SCB consists of both RAM and
— l —Tl ROM type memories. The

1 ROM memory is necessary

MS DMA for system initialization

| and for storing the system
PCB : : - SIOB algorithms. ~ The RAM

memory is used for storing
the segmented image and
Figure 2. The microcontroller. user specific algorithms

dowloaded from the host

226

system. The timing of
the microcontroller as
well as of the entire
system is generated by
the system timing
generator (STG).

The host interfce
consists solely of the
circuitry necessary to
insure the electrical
continuity between the
host interface and the
system and to handle
the handshake
protocols.

I111.2.
engine
The algorithm
described in section I is
executed by the

The relaxation

relaxation engine (Figure 3).
system via the microcontroller,
initial probability function.

SCB SDB

SDB gcp - ¥

b)

SDB SCB

SDB SCB SDB
IPFG SSN
Figure 3. The relaxation engine.
SDB SCB
HA NE
— AO |
DL pL |
' L- SCB

SCB

Figure 4. The initial probability

SDB

Figure 5. Segmentation stage networks:

a) chain configuration b) loop configuration.

function generator.

The image data, arriving from the host
is initially analized
This task is performed by the initial

to derive the

probability function
generator (IPFG) (Figure
4). This circuitry
determines the function
P(r) as defined in {2.1.1}.
The image data is first

processed by the histogram
analizer (HA), which
determines the average
gray level values for the
two regions that are to be
segmented in the picture.

The
delayed by

image data,
the histogram

227

analyzer processing SCB
time is then passed

through the SDB
neighborhood extractor —_—

(NE), a circuit that rPlG] "CFG QFG b—

latches, for each pixel, S| L UPFG
its eight neighbors.
These pixel values, ___P)L DL DL ’___J—

together with the region
average gray level SCB
values, are then fed
through a series of

arithmetic operators
(AO) arranged to Figure 6. The segmentation stage.
implement {2.1.1}.

Since the image only consists of two regions and therefore P(I)(i,j,0)
= 1 - P(1)(i,j,1), only P(1)(i,j,1) is computed, for every pixel. It is
possible to execute to execute these operations in real time because
components are now available that execute multiplications and
divisions at the rate of one every 40ns. The neighborhood extractor
(Figure 3) is based on a series of delay lines (DL), which are circuits
that output at every instant the data received in input n clocks
earlier, where n is the length of the line. Each delay line is
implemented using shift registers. Delay lines are also used in the
design to synchronize the pipeline. ’

The second functional block of the relaxation engine is the
segmentation stage network (SSN). This

SCB subsystem iterates the probability updating

] scheme described in section I. It consists

wd NE of a network of segmentation stages , each
LAO capable of executing one iteration of the
relaxation algorithm. These stages can be

(DL} [modularly connected in a variety of ways.

] Two configurations are displayed in
SCB Figure 5. The first (Figure 5.a.) consists

o of four units cascaded, so that the output

Figure 7. The compatibility of a stage is the input of the next one.
function generator. The second configuration (Figure 5.b.)

sacrifices some of the system throughput

228

of the by iterating the algorithm by looping the output of a string of
two stages to its input, as many times as is desired.

Each segmentation stage (Figure 6) is responsible for executing
one iteration of the relaxation algorithm, that is, for obtaining
P(1)(i,j,k) from P(r-1)(i,j,k). The first task of the updating unit is to
determine the a priori probabilities p1(0) and p1(1) of the two image
regions. The probability function and the a priori probabilities are
then output to the compatibility coefficient generator (CFG). This
circuitry determines the image compatibility function by running each
pixel neighborhood through a network of arithmetic operators,
arranged in a sequence, such to reproduce the calculations defined in
{2.1.6} and {2.1.7} (Figure 7). Once the compatibility function is
computed, it is output, together with the probability function, to the
support function generator (QFG). The support function and the
probability function, finally are processed by the updated probability
function generator (UPFG) to produce the updated probability
function. Both the support and the updated function generators are
networks of arithmetic operators arranged so to perform {2.1.8} and
{2.1.9}.

I1V. Conclusions.

In the previous pages we presented the architecture of a
blob-detecting system. The system, based on a pipelined processing
scheme, allows for real time segmentation of ’blobby’ images for
scientific and industrial applications. The system is designed to be
an inexpensive image analysis peripheral to a commercial personal
computer. The design can be expanded, with little effort, to add the
capacity to execute other image processing algorithms, characterized
by the application of the same procedure on all pixels, and that
operate on a neighborhood basis. Algorithms such as template
matching, for the recognition of objects, fall in this cathegory. This
expansion can be achieved by replacing the compatibility function
circuitry with memory, which can be loaded with the desired
operator, and replacing the dedicated arithmetic operators network
with a programmable digital signal processor.

V. Literature.

(1] Kittler J. and Illingworth J., "Relaxation labelling
algorithms - a review,”" Image and vision computing, Vol.3 No.4
(1985), pp. 206-216.

229

